Schema Disruption in Tree-Structured Chromosomes

William A. Greene
Computer Science Department
University of New Orleans
New Orleans, LA 70118 USA
504-280-6755
bill@cs.uno.edu

Abstract

We study if and when the inequality $d p(H) \leq r e l \Delta(H)$ holds for schemas H in chromosomes that are structured as trees. The disruption probability $d p(H)$ is the probability that a random cut of a tree limb will separate two fixed nodes of H. The relative diameter $r e l \Delta(H)$ is the ratio (max distance between two fixed nodes in H) / (max distance between two tree nodes), and measures how close together are the fixed nodes of H. Inequality $d p(H) \leq r e l \Delta(H)$ is of significance in proving Schema Theorems for non-linear chromosomes, and so bears upon the success we can expect from genetic algorithms. For linear chromosomes, $d p(H)=r e l \Delta(H)$. Our results include the following. There is no constant c such that $d p(H) \leq c$. $\operatorname{rel} \Delta(H)$ holds for arbitrary schemas and trees. This is illustrated in trees with eccentric, stringy shapes. Matters improve for dense, ball-like trees, explained herein. Inequality $d p(H) \leq \operatorname{rel} \Delta(H)$ always holds in such trees, except for certain atypically large schemas. Thus, the more compact are our tree-structured chromosomes, the better we can expect our genetic algorithms to work.

Categories and Subject Descriptors

I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods, and Search - heuristic methods; F. 2.2 [Analysis of Algorithms and Problem Complexity]: Nonnumerical Algorithms and Problems - computations on discrete structures, geometrical problems and computations.

General Terms

Algorithms, Theory

Keywords

Genetic algorithms, schema theory, schema disruption probability, alternative chromosomes, trees.

1. INTRODUCTION

In breve, this paper investigates the probability of disrupting a schema, when chromosomes are structured as a tree of bits.
The area of Genetic Algorithms concerns a heuristic problem-solving paradigm that takes Darwinian evolution as its metaphor.

[^0]There is some problem at hand. The problem has numerous solutions, some better (fitter) than others. The number of solutions is typically enormous, too large to search exhaustively. A small-ish population of solutions is maintained, and subjected to such evolutionary forces as survival of the fittest, mating with crossover, and mutation. The hope is that better and better solutions will surface as the population evolves.
In classical genetic algorithms (GAs), as found in Holland [4] or Goldberg [1], individual solutions in the population mimic haploidal chromosomes from nature. Individual solutions get represented as bit strings; that is, as 0's and 1's that are arranged in a linear sequence, one after the other, like beads strung along a strand. All individuals have the same length, N. A don't-care symbol, $*$, is introduced, then a schema is defined to be a string, of length N, of symbols chosen from $\{0,1, *\}$. A schema denotes a subspace of the space of all individuals, namely, an individual is in that subspace (the individual is a representative of the schema) if the individual agrees with the schema at all the positions where the schema is 0 or 1 (the fixed positions in the schema). (The positions with $*$ are the free positions of the schema.) The letter H (for hyperplane) is often used to name a schema. Schemas are studied because they focus on the issue of when GAs work well. If the problem at hand is reasonably well-behaved, and if the representation of individual solutions is a natural one, then bits should group together into building blocks. A building block is a collection of related bits, which can take on values (0's versus 1's) that contribute significantly to the fitness of the individual. A schema simply expresses the characterizing properties of a building block.
Mating via one-point crossover is accomplished by clipping two parent chromosomes at some same cutpoint along their sequence of bits, and exchanging parental fragments to form two children, which then have the same length as their parents. If the cutpoint lies between the outermost fixed positions of a schema H, the cutpoint is said to disrupt H. The terminology acknowledges the fact that if one parent is a representative of H and if the cutpoint lies between the outermost fixed positions of H, then it is possible that neither child is again a representative of H. The disruption probability $d p(H)$ of a schema H is the probability that a uniformly randomly chosen cutpoint will disrupt H. For a chromosome structured as a linear sequence, the disruption probability is easily calculated: $d p(H)=\delta /(N-1)$, where δ is the distance between the outermost fixed positions of H. Probability $d p(H)$ plays an important role in Holland's Schema Theorem (confer [1] or [4]).
The lesson is clear. If a building block is to persist in the population over generations, it is better if its bits (that is, the fixed positions of the corresponding schema) are located close together. But
this points up a weakness with arranging the bits of an individual as a linear sequence. A bit has two nearest neighbors (the bits to either side of it, of course), but no more than two. What if it is in the nature of the problem at hand that a bit should be equally close to more than two other bits?

In this paper we allow a different structure for chromosomes. Namely, we consider the case that the 0 's and 1 's in a chromosome are arranged like the nodes of a tree, which we denote as T.
The analogue of $d p(H)$ for tree-structured chromosomes is addressed in the next section. For now, suffice it to say that the calculation of the analogue of $d p(H)$ is not so easily done. This paper is devoted to finding an easily calculated upper bound for $d p(H)$.
We close this section by commenting on related research. Non-linear bit arrangements and in particular tree-structured arrangements, and a schema theory for such, have been studied by others. Principally this has come from those in the Genetic Programming (GP) community, although Greene in [2] and [3] has investigated non-linear bit arrangements in the abstract. In GP approaches, individuals are programs, specifically functions, realized as expression trees. Mating with crossover consists of clipping out and exchanging subtrees between the two parents. The individuals in a population can have quite different shapes, which fact complicates a number of issues, such as, what will be the definition of a schema, and what relation will hold between the locations of the cutpoints in the two parents? For Koza [5], O'Reilly [6], [7], and Whigham [10], schemas are expression fragments which incorporate don't care symbols, and which are further characterized by not being anchored to some fixed position within the expression tree and moreover can be instantiated multiple times within the same individual. In Rosca [9] the innovation is that a schema is an expression fragment which is anchored at the root of the expression tree.
Our own interest in non-linear bit arrangements did not originate from a prior interest in genetic programming. Rather, our intuition has been that strictly linear bit arrangements are simply too confining and inflexible. From within the GP community, the work that comes closest to our own efforts is that of Poli and Langdon [8]. Their definitions of schema, mutation, and crossover are the closest carryover to GP of the allied notions from the standard GA approach with its linear bit arrangements. For Poli and Langdon, a schema is a rooted tree of symbols, where the root is to correspond to the root of an expression tree that is an individual in the population. The symbols in the schema are of three kinds: function symbols, terminal symbols (variables and constants), and a don't-care symbol. Don't-care symbols can appear at interior nodes or leaf nodes of a schema, so the schema dictates a minimum size of any individual expression tree which can instantiate the schema. To perform crossover, Poli and Langdon search the structures of two parent individuals, starting at their roots and working downwards. They identify the largest rooted subtrees which are isomorphic between the two parents, and at random they choose one of the branches in the isomorph for a one-point cut, then parental fragments are exchanged. (Finally, for example, mutation of an interior node amounts to substituting one function by another of the same function type, meaning the same type of return value and the same number and types of parameters.) We will remark on similarities between our present research and the work of Poli and Langdon [8] in passing.

2. SCHEMA DISRUPTION IN TREES

We begin with some definitions. Many are standard, but we give them for the sake of clarity and completeness.
A graph G consists of points called nodes, certain pairs of which have a edge between them, in which case the pair are termed adjacent. A path in G from node x to node y is a sequence of distinct nodes $x=v_{0}, v_{1}, v_{2}, \ldots, v_{n}=y$ in G, such that $v_{\mathrm{i}-1}$ is adjacent to v_{i} for $1 \leq i \leq n$. The length of this path is n. Note that insisting the nodes in the path are distinct means that a path does not cross or retrace itself. A cycle is similar to a path, and is a sequence $v_{0}, v_{1}, v_{2}, \ldots, v_{n}$ of adjacent nodes, all distinct except that $v_{0}=v_{n}$.
A graph G is connected if for each pair of nodes x and y, there exists a path between them. A graph is acyclic if it contains no cycles. The degree of a node in a graph is the number of nodes to which it is adjacent.
A(n ordinary) tree is a finite acyclic graph. The number of edges in a tree is always one less than the number of nodes. A tree of degree k is a tree for which the degree of every node is at most k; such a tree is also called one of bounded degree with bound k.
We also need the next definitions. A rooted tree is a tree which has one node distinguished as the root of the tree. The nodes adjacent to the tree are its children and the root is their parent. The children are themselves the parents of the non-parental nodes to which they are adjacent, etc. A rooted k-ary tree is one in which every node has at most k children. A rooted 2 -ary tree is the familiar binary tree. A leaf is a node with no children.
In a rooted k-ary tree, a node is adjacent to its parent, so a rooted k ary tree is also a(n ordinary) tree of degree $k+1$. But a tree of degree $k+1$ might not meet the definition of a rooted k-ary tree, since the root is adjacent to at most k (not $k+1$) nodes, namely, its children.
In a tree, there is a unique path between any two nodes x and y; the distance dist (x, y) between x and y is the length of (i.e., number of edges in) that path. Function dist satisfies the triangle inequality: $\operatorname{dist}(x, z) \leq \operatorname{dist}(x, y)+\operatorname{dist}(y, z)$.

We look ahead to mating with crossover. Cutting a tree-structured chromosome will mean clipping a tree edge. That disconnects the individual into connected subtrees, which will serve as the fragments to be exchanged under crossover. All our individuals will be trees of the same shape (a shape dictated by the problem at hand which we are trying to solve), and when parents are cut for crossover, the cutpoints have the same locations in the parents. Children will thus have the same shape as their parents. It is easy to imagine tree analogues to one-point crossover, two-point crossover, etc., from standard GAs. This paper exclusively considers one-point crossover.
Given two nodes in a tree T, we say an edge separates them provided that cutting T at that edge results in x being in one of the fragments and y being in the other; this happens if the cut severs the unique path between x and y. We say an edge separates a subset A of nodes if there are two nodes in A which are separated by the edge.
For our exploration of tree-structured chromosomes, a schema will mean the expected analogue from standard genetic algorithms. Namely, a schema is the subspace of all possible individuals determined by fixing the values (0 's and 1 's) at some designated subset
of the bits (tree nodes) and letting the other bits range over their values. The schema can be denoted by labeling the nodes of the tree with characters 0,1 , or $*$. We will use the same name H for the schema and for its set of fixed nodes. The disruption probability of a schema H is the probability that a uniformly randomly chosen (one-point) cut will separate H. It equals the number of edges that separate H, divided by the total number of edges in our tree-structured individuals. (The number of edges that separate H comes closest to what is termed the defining length of a schema, in the GP work of Poli and Langdon [8].)
Define the diameter, $\Delta(S)$, of a set S of tree nodes to be the maximum distance between any two elements of S. The relative diameter, $\operatorname{rel} \Delta(H)$, of a schema H means the ratio $\Delta($ fixed $(H)) / \Delta(G)$, where f ixed (H) is the set of fixed positions of H.
This paper concerns if and when inequalities of a form like $d p(H)$ $\leq \operatorname{rel} \Delta(H)$ hold. Amount $\operatorname{rel} \Delta(H)$ is our candidate for an easily calculated upper bound on $d p(H)$ to which we earlier alluded.

3. THE GENERAL CASE

In this section we present some results that hold for arbitrary treestructured chromosomes T. Let a schema H be given. Recall, we let the same name H also designate the set of fixed nodes of the schema. Now let T_{H} denote the smallest subtree of T that contains H. Tree T_{H} is the intersection of all the subtrees of T which contain H. Now we make some observations about T_{H}. (Subtree T_{H} is termed the minimum tree fragment for the schema H, in the GP work of Poli and Langdon [8].)
Each leaf of T_{H} is an element of H. For, if a leaf of T_{H} is not an element of H, then we can remove it and the edge to it and so obtain a smaller subtree of T which still contains H, in contradiction to the minimality of T_{H}.
The set of edges of host chromosomal tree T which separate H is the same as the set of edges which separate T_{H}. One set containment is obvious, since $H \subseteq T_{H}$. And if an edge separates T_{H} then in particular it must separate two leaves of T_{H}, but those are elements of H. Now we can also conclude that $d p(H)=d p\left(\mathrm{~T}_{H}\right)$.
Also $\Delta(H)=\Delta\left(T_{H}\right)$. Why? Since $H \subseteq T_{H}$, we see $\Delta(H) \leq \Delta\left(T_{H}\right)$. On the other hand, the two farthest apart elements of T_{H} must be two leaves of T_{H}, but those must be elements of H, and it follows that $\Delta\left(T_{H}\right) \leq \Delta(H)$. Conclude $\Delta(H)=\Delta\left(T_{H}\right)$. Hence, also $\operatorname{rel} \Delta(H)$ $=\operatorname{rel} \Delta\left(T_{H}\right)$.
It follows that, when investigating whether relation $d p(H) \leq$ $r e l \Delta(H)$ holds, if need be we can assume our schema H of fixed nodes is in fact a subtree of T.

In general, the inequality $d p(H) \leq \operatorname{rel\Delta }(H)$ does not hold, as our first example will show. The chromosomal tree T and schema H of Example 1 are pictured in Figure 1. Schema H consists of s spoke nodes arranged around a hub node, and the remainder of T consists of t tail nodes aligned in a row. There are altogether $s+t$ edges in this tree, and of those, s will separate nodes of H, so $d p(H)=$ $s /(s+t)$. On the other hand, $\operatorname{rel} \Delta(H)=2 /(t+2)$, so that the ratio $\frac{d p(H)}{r e l \Delta(H)}=\frac{s}{2} \cdot \frac{t+2}{s+t}$. Denote the right-hand side of this equation by R. We can arrange that R is arbitrarily large. For instance, if s and t are a same very large number, then R is approximately $s / 4$

Figure 1: Example 1
and is also very large. For a given chromosomal tree structure T, there might be some constant c such that $d p(H) \leq c \cdot \operatorname{rel\Delta }(H)$ for every schema $H \subseteq T$, but there is no constant c that will work for every tree structure. We have proved the following.

Proposition 1: There is no constant c for which the relation $d p(H)$ $\leq c \cdot \operatorname{rel\Delta }(H)$ will hold for every schema $H \subseteq T$ in every tree structured chromosome T.

Given any tree-structured chromosome T, and schema $H \subseteq T$, there is a constant c_{H} which depends upon H and for which $d p(H) \leq c_{H}$. $r e l \Delta(H)$, as we now set about showing.
Let T and H be given. Let a and b be two elements of H at a maximal distance from one another, so that the unique path between a and b has length $\operatorname{dist}(a, b)=\Delta(H)$. Let m be the middle node on this path. Note that the distance from m to either a or b is at least as big as $\lfloor\Delta(H) / 2\rfloor$, the floor of $\Delta(H) / 2$.

Lemma 1: Let T, H, a, b, and m be as in the preceding paragraph. The distance between m and any element of H is at most $\lceil\Delta(H) / 2\rceil$, the ceiling of $\Delta(H) / 2$.

Proof: By way of contradiction, assume there is an element $d \in H$ such that $\operatorname{dist}(m, d)>\lceil\Delta(H) / 2\rceil$. Consider the path P from a to d. Let S be the set of nodes common to P and the path between a and b. Set S cannot consist only of a alone (otherwise, the concatenation of P and the path from a to b must be the unique path from d to b, and its length exceeds $\operatorname{dist}(a, b)=$ $\Delta(H)$, a contradiction). Also set S must consist of consecutive nodes along the path from a to b (if not consecutive, then tree T contains a cycle, a contradiction). Let v_{d} be the last of the consecutive nodes of S. There are two cases.

Case I: v_{d} is between a and mid node m : In this case, it is at v_{d} that the path from d to a first overlaps the path from a to b. It follows that the unique path from d to b must pass through v_{d} and m. Therefore $\operatorname{dist}(d, b)=\operatorname{dist}(d, m)+\operatorname{dist}(m, b)>\lceil\Delta(H) / 2\rceil$ $+\lfloor\Delta(H) / 2\rfloor=\Delta(H)$, but that makes d too far from b, a contradiction.

Case II: v_{d} is between m and b : In this case it is the path from d to a which must pass through m, and this time we can conclude $\operatorname{dist}(d, a)>\Delta(H)$, a contradiction.

Since both cases are impossible, the lemma now follows.

Recall our notation that $T_{H} \subseteq T$ is the smallest subtree of T which contains H, and the fact that the leaves of T_{H} must be elements of H. Denote by H_{e} those elements of H which are leaves of T_{H} (subscript e stands for extreme). Notation $\left|H_{e}\right|$ means the number of elements in the set H_{e}.

Proposition 2: The number of edges in T_{H} is at most
$\left|H_{e}\right| \cdot\left\lceil\frac{\Delta(H)}{2}\right\rceil$.
Proof: Let node m be as above. Every edge of T_{H} is on a path between m and a leaf of T_{H}. Therefore the number of edges is bounded by the number of leaves times the maximum length of a path from m to a leaf.

The bound given in this proposition is a tight one, as can be seen from Example 1's schema H, which is the wheel of s spoke nodes.
Now we can obtain the inequality to which we alluded prior to Lemma 1 above.

Proposition 3: Let T be a tree-structured chromosome. For a schema $H \subseteq T$ there is a number c_{H} which depends upon H and for which $d p(H) \leq c_{H} \cdot \operatorname{rel\Delta }(H)$.

Proof: $d p(H)=n_{\text {sep }} / n_{T}$, where $n_{\text {sep }}$ equals the number of edges that separate H, which equals the number of edges in T_{H}, and n_{T} equals the total number of edges in T. Our result follows

$$
\text { from observing that } \frac{n_{s e p}}{n_{T}} \leq \frac{\left|H_{e}\right| \cdot\left\lceil\frac{\Delta(H)}{2}\right]}{n_{T}} \leq \frac{\left|H_{e}\right| \cdot\left\lceil\frac{\Delta(H)}{2}\right]}{\Delta(T)} \approx
$$ $\frac{\left|H_{e}\right|}{2} \cdot \operatorname{rel} \Delta(H)$. Factor $c_{H} \approx \frac{\left|H_{e}\right|}{2}$ depends on the size of H_{e}.

Can we obtain an inequality of the form $d p(H) \leq r e l \Delta(H)$ for (most) schemas in some restricted class of tree-structured chromosomes? Eventually below, we will. Example 1 above suggests that its foible is its many spoke nodes, that is, is the fact that the hub node has degree s, which we can make arbitrarily large. Perhaps matters improve if the tree's nodes are of bounded degree. But we shortly will see this restriction is not yet enough. We begin with a definition.

4. BALL-LIKE TREES

Definition: A(n ordinary) tree T is termed a ball-like tree of degree $k+1$ and radius ρ, provided
(i) there is a distinguished node cntr, the center node;
(ii) all nodes of T are at a distance at most ρ from the center;
(iii) there is at least one node at a distance ρ from the center;
(iv) all nodes have degree at most $k+1$.

Now we introduce more terminology about such trees. The parentchild relation between nodes is the expected one: in general, a node is parent to the non-parental nodes to which it is adjacent, with center node cntr being the ultimate ancestor. Given a ball-like tree T of degree $k+1$ and radius ρ, its center node can have up to $k+1$ children, and other non-leaf nodes can have up to k children. The level of a node is its distance from the center. Level λ of tree T is the set of nodes at level λ. A level is full if it has the maximum number of nodes possible, which is $(k+1) k^{\lambda-1}$. Tree T is full if its every level is full. Tree T is complete if its every level is full except possibly level ρ. The leaves of a complete tree can only appear on levels $\rho-1$ and ρ. The number of nodes in a complete ball-like tree

Figure 2: Example 2
T of degree $k+1$ and radius ρ is at most $1+(k+1) \frac{k^{\rho}-1}{k-1}$ (the full case) and at least $2+(k+1) \frac{k^{\rho-1}-1}{k-1}$ (complete but with only one node on level ρ). (The usual definition of a complete binary tree as seen in a Data Structures textbook also insists that the nodes on the bottom level are bunched together off to the left without gaps, but we will not need this stipulation.)
To obtain a general inequality of the form $d p(H) \leq c \cdot \operatorname{rel} \Delta(H)$ for some fixed constant c and arbitrary $H \subseteq T$, it is not enough to restrict to trees of bounded degree, as our next example shows. Example 2 is depicted in Figure 2. Subtree $T_{H} \supseteq H$ is a full balllike tree of degree $k+1$ and radius ρ. Such T_{H} arises when H is any superset of the leaves of the full tree T_{H}. The rest of host chromosomal tree T is the tail depicted. Note that $\Delta(H)=2 \rho$ and $\Delta(T)=2 \rho$ $+t$. The number of edges in a tree is always one less than the number of nodes, so the number of edges in tree T that disrupt H is the number of edges in T_{H}, which is $(k+1) \frac{k^{\rho}-1}{k-1}$. The total number of edges in tree T is t more than that. Now imagine that we let t equal $(k+1) \frac{k^{\rho}-1}{k-1}$; it follows that $d p(H)=1 / 2$. Therefore the ratio $\frac{d p(H)}{\operatorname{rel} \Delta(H)}$ equals $\frac{2 \rho+t}{4 \rho}=\frac{2 \rho+(k+1) \frac{k^{\rho}-1}{k-1}}{4 \rho}$, which can be made arbitrarily large by letting ρ become arbitrarily large. We have proved the following proposition.
Proposition 4: There is no constant c for which the relation $d p(H)$ $\leq c \cdot \operatorname{rel\Delta (H)}$ will hold for every schema $H \subseteq T$ in every tree T of bounded degree.

5. COMPLETE ($k+1$)-ARY TREES

In this section we will obtain the inequality $d p(H) \leq r e l \Delta(H)$ for almost all schemas $H \subseteq T$, for a restricted class of tree-structured chromosomes T.
In the next proposition, we consider a limited range of values for k, namely, $2 \leq k \leq 7$, (i.e., trees of degree 3 through 8), and also a limited range of values for ρ, namely, $2 \leq \rho \leq 100$. The assumption is that the restricted ranges studied will indicate the general facts, and also will exhaust the types of branchy trees that are likely to arise in practice. The proof will reveal that the result appears to hold for arbitrary $k \geq 2$ and arbitrary $\rho \geq 2$. (Tree radius $\rho=1$ amounts to trivialities.)

Proposition 5: For $2 \leq k \leq 7$ and $2 \leq \rho \leq 100$, the inequality $d p(H)$ $\leq \operatorname{rel} \Delta(H)$ holds for all schemas $H \subseteq T$ and all complete ball-like trees T of degree $k+1$ and radius ρ, with the exception of certain schemas H which contain atypically large numbers of fixed positions.

Proof: This result is the natural extension of Proposition 3 in Greene [3], and its proof.

Given a certain schema diameter value $\delta=\Delta(H)$, there are many schemas H which have that diameter. Some are large and some are small, and the same can be said for the enveloping subtree T_{H} of H. Now imagine the schema diameter value $\delta=$ $\Delta(H)$ as a given. We will find an upper bound for fraction $d p(H)$, by calculating the most that its numerator can be, and then the least that its denominator can be and still exceed the numerator.

The numerator of $d p(H)$ can be as large as the number of edges in the largest possible enveloping subtree T_{H}. We introduce some notation: Let h_{d} be a fixed node of H at a maximal distance from T 's center node cntr; let d be the distance between h_{d} and the center. Any two nodes if T_{H} are at most distance $\delta=$ $\Delta(H)=\Delta\left(T_{H}\right)$ apart. So any node of T_{H} is at most distance δ from h_{d}. We will count how many nodes can possibly be in our chromosomal tree T, be no further from the center than h_{d}, and
be at distance at most δ from h_{d}. Subtree T_{H} can be as large as that set of nodes.

Either schema diameter $\delta=\Delta(H)$ is even or it is odd. And either $\delta \leq d$ or $\delta>d$. Thus there are four cases to consider. We will give full details for two of the cases and leave the details of the other two cases to the reader.

Case I: even $\delta \leq d$ (see Figure 3 for guidance). Consider the path of length δ, consisting of the nodes that lead from h_{d} towards the center of T; denote the nodes on this path as $h_{\mathrm{d}}=v_{0}, v_{1}, v_{2}, \ldots, v_{\delta}$. Subtree T_{H} could contain all the nodes in a full rooted k-ary tree, rooted at $v_{\delta / 2}$ and having height $\delta / 2$; the number of nodes in such a subtree is $1+\mathrm{k}+\mathrm{k}^{2}+\ldots+\mathrm{k}^{\delta / 2}=$ $\frac{k^{\delta / 2+1}-1}{k-1}$. Similarly, $v_{\delta / 2+1}$ might have $k-1$ other children which are the roots of full rooted k-ary trees of height $\delta / 2-2$, and T_{H} might contain all these subtrees; they would contribute $(k-1)\left(1+k+k^{2}+\ldots+k^{\delta / 2-2}\right)=k^{\delta / 2-1}-1$ more nodes to T_{H}. Again similarly, $v_{\delta / 2+2}$ might have $k-1$ other children which are the roots of full rooted k-ary trees of height $\delta / 2-3$; these could contribute $k^{\delta / 2-2}-1$ more nodes to T_{H}. Continuing on towards the center node, $v_{\delta-1}$ might have $\mathrm{k}-1$ other chil-

Figure 3: δ is even, $\delta \leq d$.
dren which could belong to T_{H}. The $\delta / 2$ nodes $v_{\delta / 2+1}, v_{\delta / 2+2}$, $\ldots, v_{\delta-1}, v_{\delta}$, together with the nodes in the trees just alluded to, altogether add up to
$\frac{k^{\delta / 2+1}-1}{k-1}+\left(k^{\delta / 2-1}-1\right)+\left(k^{\delta / 2-2}-1\right)+\ldots+(k-1)+\frac{\delta}{2}$
$=\frac{(k+1) k^{\delta / 2}-2}{k-1}$ nodes which might belong to T_{H} and in fact this constitutes the largest that T_{H} could be, given schema diameter δ. The number of edges in T_{H} is one less, or $\frac{(k+1) k^{\delta / 2}-2}{k-1}-1$.

Let N_{I} denote this last amount (subscript I is for Case I.)
Continuing with case I, we now consider host chromosomal tree T. If the distance d between H 's most outlying node h_{d} and T 's center node is less than the radius ρ of T, then tree T, to be complete and of radius ρ, can have as few as one node on level ρ, in which case T has $(k+1) \frac{k^{\rho-1}-1}{k-1}+2$ nodes and therefore $(k+1) \frac{k^{\rho-1}-1}{k-1}+1$ edges. But if distance d equals T 's radius ρ, then since we have allowed T_{H} to be as big as containing the full k-ary of height $\delta / 2$ rooted at node $v_{\delta / 2}$, it follows that T will be required to have at least $k^{\delta / 2}$ nodes on its farthest level ρ. Then T must have at least $k^{\delta / 2}+(k+1) \frac{k^{\rho-1}-1}{k-1}+1$ nodes and hence at least $k^{\delta / 2}+(k+1) \frac{k^{\rho-1}-1}{k-1}$ edges. Ergo, $d p(H)$ is bounded above by $\frac{N_{\mathrm{I}}}{(k+1) \frac{k^{\rho-1}-1}{k-1}+1}$ if $d<\rho$, but bounded above by $\frac{N_{\mathrm{I}}}{k^{\delta / 2}+(k+1) \frac{k^{\rho-1}-1}{k-1}}$, if $d=\rho$.

Since T is complete but not necessarily full, $\Delta(T)$ is either 2ρ or $2 \rho-1$; in either event, $\operatorname{rel\Delta }(H) \geq \delta / 2 \rho$.

Combining facts, the inequality $d p(H) \leq r e l \Delta(H)$ will hold, provided the next two inequalities hold:

$$
\begin{aligned}
& \frac{N_{\mathrm{I}}}{(k+1)\left(\frac{k^{\rho-1}-1}{k-1}\right)+1} \leq \frac{\delta}{2 \rho} \quad, \text { for even } \delta \leq d \text { when } d<\rho \\
& \frac{N_{\mathrm{I}}}{k^{\delta / 2}+(k+1)\left(\frac{k^{\rho-1}-1}{k-1}\right)} \leq \frac{\delta}{2 \rho}, \text { for even } \delta \leq d \text { when } d=\rho
\end{aligned}
$$

We used a computer program to examine if or when these inequalities held, for T radius ρ in the range from 2 to 100 and k in the range from 2 to 7 , and found the following results. There was only one class of failure. For every k in $2 . .7$, the second inequality failed in the particular case that $d=2, \rho=2$, and $\delta=2$. This is a failure of our upper bound on $d p(H)$ to be less than or

Figure 4: $k=4, d=2, \rho=2, \delta=2$.
Black nodes are fixed; white are unfixed.
equal to our lower bound on $\operatorname{rel} \Delta(H)$. For instance, when $k=4$, our upper bound on $d p(H)$ is $5 / 9$, and our lower bound on $r e l \Delta(H)$ is $2 / 4$. Nonetheless, in fact the relation $d p(H) \leq r e l \Delta(H)$ holds for values $d=2, \rho=2$, and $\delta=2$, for any $k \geq 2$. Figure 4 illustrates what happens, exemplified by the choice of $k=4$. Figure 4(a) shows, for $d=2, \rho=2$, and $\delta=2$, the largest T_{H} and smallest $T \supseteq T_{H}$, and in this event, $d p(H)$ is $5 / 9$ and $\operatorname{rel} \Delta(H)$ is $2 /$ 3. Figure 4(b) shows what happens when we make T become larger by adding more nodes on level ρ. For such larger trees T, $d p(H)$ will be at most $5 / 10$ and $\operatorname{rel} \Delta(H)$ becomes $2 / 4$, and therefore $d p(H) \leq r e l \Delta(H)$.

That finishes Case I; now we can proceed to a next case.
Case II: odd $\delta>d$ (see Figure 5 for guidance). Note that since h_{d} is a fixed node of H at furthest distance from the center node cntr, it follows that $d \geq\lceil\delta / 2\rceil$. This time we consider the path of length d, consisting of the nodes that lead from h_{d} back to center node cntr; denote the nodes on this path as $h_{\mathrm{d}}=v_{0}, v_{1}$, $v_{2}, \ldots, v_{d}=$ cntr. Subtree T_{H} could contain all the nodes in a full rooted k-ary tree of height $\lceil\delta / 2\rceil-1$, rooted at $v_{\lfloor\delta / 2}$; such a tree contributes $\frac{k^{\lceil\delta / 2\rceil}-1}{k-1}$ nodes to T_{H}. Similarly, $\varphi_{\delta / 2\rceil}$ might have $k-1$ other children which are the roots of full rooted k-ary trees of height $\lceil\delta / 2\rceil-2$, and T_{H} might contain all these subtrees; they would contribute $\mathrm{k}^{\lceil\delta / 2\rceil-1}-1$ more nodes to T_{H}. Analogously, nodes can be contributed to T_{H} by groups of $k-1$ full rooted $k-$ ary child trees, rooted at each of the nodes $v_{\lceil\delta / 2\rceil+1}, \ldots, v_{d-1}$, and of respective heights $\lceil\delta / 2\rceil-3, \ldots, \delta-d$. Finally, we note that the center node cntr might have (not $k-1$ but) k other children which are the roots of full rooted k-ary trees of height $\delta-d-1$; those subtrees could contribute $k^{\delta-d}-1+\frac{k^{\delta-d}-1}{k-1}$ more nodes to T_{H}. Together with the $d\lfloor\delta / 2\rfloor$ nodes $v\lceil\delta / 2\rceil, \ldots, v_{d}$, we see that T_{H} could contain as many as $\frac{2 k^{\lceil\delta / 2\rceil}-2}{k-1}$ nodes.
Finally, T_{H} could contain as many as $N_{\mathrm{II}}=\frac{2 k^{\lceil\delta / 2\rceil}-2}{k-1}-1$

Figure 5: δ is odd, $\delta>d$.
edges. Reasoning as in Case I, relation $d p(H) \leq r e l \Delta(H)$ will hold, provided the next two inequalities hold:

$$
\begin{aligned}
& \frac{N_{\mathrm{II}}}{(k+1)\left(\frac{k^{\rho-1}-1}{k-1}\right)+1} \leq \frac{\delta}{2 \rho} \quad, \text { for odd } \delta>d \text { when } d<\rho \\
& \frac{N_{\mathrm{II}}}{k^{\lfloor\delta / 2\rfloor}+(k+1)\left(\frac{k^{\rho-1}-1}{k-1}\right)} \leq \frac{\delta}{2 \rho}, \text { for odd } \delta>d \text { when } d=\rho
\end{aligned}
$$

We used a computer program to examine if or when these inequalities held, for T radius ρ in the range from 2 to 100 , and k in the range from 2 to 7, and found the following results. For every k in $2 . .7$, the program invariably reported a failure when d $=\rho$ and $\delta=2 d-1$. In fact, it can happen that $d p(H)$ exceeds $r e l \Delta(H)$ when $d=\rho$ and $\delta=2 d-1$, as we now show by example, pictured in Figure 6. Let tree T_{0} satisfy: its center cntr has one full rooted k-ary subtree S_{0} of height $\rho-1$, and has $k-1$ full rooted k-ary subtrees $S_{1}, S_{2}, \ldots, S_{k}$ of height $\rho-2$. Let the fixed nodes of schema H be the leaves of T_{0}. Let tree T be T_{0} but with an exceptional node appended to a former leaf of one of the shorter subtrees of cntr. The exceptional node will not be one of the fixed nodes of schema H. With respect to schema $H \subseteq T$, we have the following. $T_{H}=T_{0}$; the number of edges in T_{H} is $\frac{2 k^{\rho}-k-1}{k-1}$; the number of edges in T is one more, or
$\frac{2 k^{\rho}-2}{k-1}$; hence, $d p(H)=\frac{2 k^{\rho}-k-1}{2 k^{\rho}-2}$. On the other hand, $\operatorname{rel} \Delta(H)=\frac{2 \rho-1}{2 \rho}$. Since $d p(H)$ can be much closer to 1 than is $\operatorname{rel\Delta }(H)$, we see that $d p(H)$ can exceed $\operatorname{rel\Delta }(H)$. Let us also note that schema H is an atypically large one in host chromosomal tree T. The number of nodes in H is $k^{\rho-1}+k \cdot k^{\rho-2}=2 k^{\rho-1}$, whereas the number of nodes in T is $\frac{k^{\rho}-1}{k-1}+k \cdot \frac{k^{\rho-1}-1}{k-1}+2=\frac{2 k^{\rho}+k-3}{k-1}$. So the ratio $\frac{\text { number of nodes in } H}{\text { number of nodes in } T} \approx \frac{(k-1) 2 k^{\rho-1}}{2 k^{\rho}}=\frac{k-1}{k}$, which is half

Figure 6: $d=\rho$ and $\delta=\mathbf{2 d} \mathbf{- 1}$.
Black nodes are fixed nodes of H.
or more. We typically think of schemas (or building blocks) as being smaller than that. That ends our analysis of Case II.

Case III: odd $\delta \leq d$. In this case, the numerator for our upper bound on $d p(H)$ is $N_{\text {III }}=2\left(\frac{k^{\lceil\delta / 2\rceil}-1}{k-1}\right)-1$. Inequality $d p(H) \leq$ rel $\Delta(H)$ will hold provided

$$
\begin{aligned}
& \frac{N_{\text {III }}}{(k+1)\left(\frac{k^{\rho-1}-1}{k-1}\right)+1} \leq \frac{\delta}{2 \rho} \quad, \text { for odd } \delta \leq d \text { when } d<\rho \\
& \frac{N_{\text {III }}}{k^{\lfloor\delta / 2\rfloor}+(k+1)\left(\frac{k^{\rho-1}-1}{k-1}\right)} \leq \frac{\delta}{2 \rho}, \text { for odd } \delta \leq d \text { when } d=\rho
\end{aligned}
$$

We used a computer program to examine if or when these inequalities held, for T radius ρ in the range from 2 to 100 , and k in the range from 2 to 7 , and found the following results. No failures at all were reported.

Case IV: even $\delta>d$. In this case, the numerator for our upper bound on $d p(H)$ is $N_{\mathrm{IV}}=\frac{(k+1) k^{\delta / 2}-2}{k-1}-1$. Inequality $d p(H)$ $\leq \operatorname{rel} \Delta(H)$ will hold provided

$$
\begin{array}{ll}
\frac{N_{\mathrm{IV}}}{(k+1)\left(\frac{k^{\rho-1}-1}{k-1}\right)+1} \leq \frac{\delta}{2 \rho} & \text {, for even } \delta>d, d<\rho \\
\frac{N_{\mathrm{IV}}}{k^{\delta / 2}+(k+1)\left(\frac{k^{\rho-1}-1}{k-1}\right)} \leq \frac{\delta}{2 \rho} & \text {, for even } \delta>d, d=\rho
\end{array}
$$

We used a computer program to examine if or when these inequalities held, for T radius ρ in the range from 2 to 100 , and k in the range from 2 to 7 , and found the following results. There were three classes of failures. (1) The second inequality invariably fails when $d=\rho$ and $\delta=2 \rho$. But these values imply that $\operatorname{rel\Delta }(H)=1$, and so it is certainly as large as the probability $d p(H)$. Thus, there really is not a failure of the relation $d p(H) \leq$ $r e l \Delta(H)$ for this class of report. (Our upper bound on $d p(H)$ this time evaluates to a number greater than 1 , so is too generous.) (2) Only for $k=2$, the second inequality fails for the values $d=$ $3, \rho=3$, and $\delta=4$. Similar to our analysis of the failure reported in Case I, in fact there is no failure of relation $d p(H) \leq r e l \Delta(H)$ for these values. (3) Invariably the first inequality fails when $d=\rho-1$ and $\delta=2 d$. This can give a genuine failing of inequality $d p(H) \leq r e l \Delta(H)$. Now we can have trees for which $d p(H)=\frac{(k+1) k^{\rho-1}-k-1}{(k+1) k^{\rho-1}-2}$, whereas $\operatorname{rel} \Delta(H)=$ $\frac{2 \rho-2}{2 \rho-1}$. Such trees again feature schemas H which are atypically large.

6. CONCLUSIONS \& FUTURE WORK

We have investigated schema disruption probability $d p(H)$ when chromosomes are structured as the nodes of a tree T. We have sought the existence of upper bounds for $d p(H)$ of the form $\operatorname{rel} \Delta(H)$, or form $c \cdot \operatorname{rel\Delta (H)}$ for some constant c. Three of the
results in this paper are the following. There is no constant c for which relation $d p(H) \leq c \cdot r e l \Delta(H)$ holds for arbitrary schema H in arbitrary tree T. For a particular H , there is a number c_{H} which depends upon H and for which $d p(H) \leq c_{H} \cdot \operatorname{rel\Delta }(H)$. For tree arity k in the range $2 . .7$, and tree radius ρ in the range $2 . .100$, relation $d p(H) \leq r e l \Delta(H)$ holds for all schemas $H \subseteq T$ and all complete balllike trees T of degree $k+1$ and radius ρ, with the exception of certain schemas H which contain atypically large numbers of fixed positions. Finally, a lesson to be drawn is that the more ball-like and full-ish are our tree-structured chromosomes, the more likely are our GAs to work well.
As future work we will investigate chromosomes with other alternative structures, such as grids and tori, and investigate the existence of upper bounds on $d p(H)$ for schemas in such chromosomes.

7. REFERENCES

[1] Goldberg, David E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley Publishing, Reading, MA.
[2] Greene, William A. (2000). "A Non-Linear Schema Theorem for Genetic Algorithms," in Whitley, D. et al. (Eds.) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2000), pages 189-194. Morgan Kaufmann Publishers, San Francisco, CA.
[3] Greene, William A. (2004) "Schema Disruption in Chromosomes that are Structured as Binary Trees", in K. Deb et al. (eds.), Proceedings of the Genetic and Evolutionary Computation Congress, June 26-30, 2004, Seattle, WA (pages 11971207). Springer Verlag LNCS 3102, New York, NY.
[4] Holland, John (1975). Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor, MI.
[5] Koza, John R. (1992). Genetic Programming: On the Programming of Computers by Natural Selection. MIT Press, Cambridge, MA
[6] O'Reilly, Una-May (1995). An Analysis of Genetic Programming. PhD thesis, Carleton University, Ottawa-Carleton Institute for Computer Science, Ottawa, Ontario, Canada, 22 September 1995.
[7] O'Reilly, Una-May, and Franz Oppacher (1995). "The Troubling Aspects of a Building Block Hypothesis for Genetic Programming", in Whitley, D. and Vose, M. D. (eds.) Foundations of Genetic Algorithms 3. Morgan Kaufmann Publishers, San Francisco.
[8] Poli, Riccardo, and William Langdon (1998). "Schema Theory for Genetic Programming with One-Point Crossover and Point Mutation". Evolutionary Computation 6(3), pages 231252. MIT Press, Cambridge, MA.
[9] Rosca, Justinian P. (1997). "Analysis of Complexity Drift in Genetic Programming", in Koza, John R. et al. (eds) Genetic Programming 1997: Proceedings of the Second Annual Conference (pages 286-294). Morgan Kaufmann Publishers, San Francisco, CA.
[10] Whigham, Peter A. (1995) "A Schema Theorem for ContextFree Grammars", in 1995 IEEE Conference on Evolutionary Computation, Vol 1, pages 178-181. IEEE Press.

[^0]: Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
 GECCO'05, June 25-29, 2005, Washington, DC, USA.
 Copyright 2005 ACM 1-59593-010-8/05/0006...\$5.00.

